NASA CR- /#0025
ERIM 190100-31-~T

ADAPTIVE PROCESSING WITH A DECISION-DIRECTED
KALMAN FILTER AND FEATURE EXTRACTION
OF MULTISPECTRAL DATA

by

R. B. Crane
Infrared and Optics Division

ENVIRONMENTAL

5167177
RESEARCH INSTITUTE SRR

“\ </v
o
-

T

=~
OF MICHIGAN SERSIVIE
FORMERLY WILLOW RUN LABORATORIES. =3 o £ <
4 THE UNIVERSITY OF MICHIGAN o P
b ‘H.m ‘*T St e
July 1974 o s 4
prepared for & @@\'J

K b
NATIONAL AERONAUTICS AND SPACE ADM]NISTRATI()Wi-/\«g’g‘L

Johnson Space Center, Houston, Texas 77058
Earth Observations Division
Contract NAS 9-9784, Task VIII

(NASA-CR-140202) ADAPTIVE PROCESSING WITH N74-32040
3 DECISION~DIRECTED KALMAN FILTER AND

FEATURE PYXTRACTION OF MULTISPECTRAL DATA .

Technical Report, (Environmental Research Unclas
Inst. of Michigan) 65 p CSCL 05B 53/19 47884



NOTICES
Sponsorship. The work reported herein was conducted by the Environ-
mental Research Institute of Michigan for the National Aeronautics and Space
Administration, Johnson Space Center, Houston, Texas 77058, under Contract
NAS 9-9784, Task VIIL Dr. Andrew Potter/TF3 is Technical Moniter. Con-
tracts and grants to the Institute for the support of sponsored research are
administered through the Qffice of Contracts Administration.

\
Disclaimers. This report was prepared as an account of Government-
spongored work. Neither the United States, nor the National Aeronautics
and Space Administration (NASA), nor any person acting on behalf of NASA:

(A) Makes any warranty or representation, expressed or implied with
respect to the accuracy, completeness, or usefulness of the infor-
mation contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

{B} Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatns, method, or
process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employ-
ee or contractor of NASA, or employee of such contractor, to the extent that
such employee or contractor of NASA or employee of such contractor pre-
pares, disseminates, or provides access to any information pursuant to hig
employment or contract with NASA, or his employment with such contractor.

Availability Notice. Requests for copies of this report should be referred

to:

National Aeronautics and Space Administration
Scientific and Technical Information Facility
P. O. Box 33

College Park, Maryland 20740

Final Disposition. After this document has served its purpose, it may
be destroyed. Please do not return it to the Environmental Research Insti-
tute of Michigan,




TECHNICAL REPORT STANDARD TITLE PAGE

L. Report No. NASA CR-ERIM 2. Government Accession No. 3. Recipient's Catalog No.

o "190100-31=T - i B

4. Title and Subtitle %. Report Date
ADAPTIVE PROCESSING WITH A DECISION-DIRECTED December 1973

KALMAN FILTER AND FEATURE EXTRACTION OF
MULTISPECTRAL DATA

6. Performing Organization Code

7. Author(s) 8. Performinpg Organizatinn Report No,
Robert B. Crane ERIM 190100-31-T
4. Perlorming Grganization Name and Address 10. Wwork Unit No.
Environmental Research Institute of Michigan Task VIII
Infrared and Optics Division 11. Contract or Grant No,
P. 0. Box 618 NAS 9-5784
Ann AI‘bOI', Michigan 48107 13. Type ol Report and Period Covered
12. Sponsoring Agency Name and Address ’ Technical RepOI‘t
National Aeronautics and Space Administration 1 February 1973 through

Johnson Space Center
Earth Observations Division
Houston, Texas 77058

15. Supplementary Notes

31 Qctober 1973

14. Sponsoring Agency Code

Dr. Andrew Potter/TF3 is Technical Monitor for NASA .,

16. Abstract

A class of adaptive decision-directed classifiers based on the Kalman filter
theory are presented. Test results are shown for some simpleclassifiers which
indicate that adapling improves classification accuracy, Memory and computational
requirements can be reduced significantly over those normally associated with Kal-
man filters. Auxiliary training data can be used in a way that should reduce the
probability of signature capture.

A method is presented for feature extraction of multispectral scanner data.
The method is the formation of a subset of linear combinations of the data from
all the spectral channels prior to recognition processing. This methoed is com-
pared to the selection of a subset of the pure spectral channels prior to recogni-
tion processing. Training data are used to define both processes. Non-training
data are then used to demonstrate the level of perfarmance, given the reduction
in the mumber of channels entering the recognition processor and using feature
extraction rather than feature selection.

17. Key Words 18. Distribution Statement
Decision-directed classifiers
Kalman filter Initial distribution is listed at the end of
Multispectral scanner data this document.
Signature capture

19. Security Classif. (of this report) 20. Security Clasgif, lof this pagy) 2t. Na. of Pages 22, Price

UNCLASSIFIED UNCLASSIFIED 63




ERIM

FORMERLY WILLOW RUN LABQRATORIES, THE UNIVERSITY OF MICHIGAN

PREFACE

This report describes part of a comprehensive and continuing program of re-
gearch concerned with advancing the state-of-the-art in remote sensing of the en-
vironment from aireraft and satellites. The research is being carried cut for the
NASA Lyndon B. Johnson Space Center, Houston, Texas, by the Environmental Re-
gearch Institute of Michigan (ERIM), formerly the Willow Run Laboratories of The
University of Michigan. The basic objective of thig multidisciplinary program is
to develop remote sensing as a practical tool to provide the planner and decision-

maker with extensive information quickly and economically.

Timely information obtained by remote sensing can be important to such peo-
ple as the farmer, the city planner, the conservationist, and others concerned with
problems such as crop yield and disease, urban land studies and development, water
pollution, and forest management. The scope of our program includes: (1) extend-
ing the understanding of basic processes; (2) discovering new applications, develop-
ing advanced remote-sensing systems, and improving automatic data processing
to extract information in a useful form; and also (3) assisting in data collection,

processing, analysis, and ground-truth verification.

The research deseribed here was performed under NASA Contract NAS 9-9784,
Tagk VIII, and covers the period from 1 February 1973 through 31 October 1973,
Dr. Andrew Potter has heen Technical Monitor. ' The program was directed by
R. R. Legault, a Vice-Pi‘esident of ERIM, by J. D, Erickson, Principal Investi-
gator and Head of the Information Systems and Analysis Department, and by
R. F, Nalepka, Head of the Multispectral Analysis Section. The ERIM number
for this report is 190100-31-T.

The author wishes to acknowledge the direction provided by Mr, R. R, Legault,
Dr. J. D, Erickson, and Mr. R. F. Nalepka. A. Sato and J. F. Reyer expertly {rans-
lated eguations into computer language and obtained tests results., Many construc~
tive discussions were held with the above and with Prof, W. L. Root, H., Horwitz
and R, J, Kanth,
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SUMN:ARY
A general form of a2 Kalman filter model is presented and shown {o be applicable to an adap-

tive method of classification of remotely sensed data. The mean vectors for all of the signa-
tures can be adapted, using a decision-directed Kaiman filter and known additive and mulfipli—
cative changeé in the mean vectors. A simplification of the general form, which updates the
estimates of the mean vectors after each decigion, is developed and tested. Previously uged
methods incorporating interactive and non-interactive updating are shown to bé'simple Kalman
filters.

A processing method is shown that reduces memory and computation requirements over
those normally associated with a Kalman filter. A formulation of the Kalman filter is presented
that updates the mean vectors after each line, rather than after each data point. Included in the
formulation is the use of a factor that depends on the degree of confidence that the decigion
made for each data point is correct. Methods are suggested for adapting the preprocessing
functions (scan-angle correction) and for using auxiliary ground truth data to reduce the prob-
ability of signature capture.

Test results are presented which tend to confirm the usefulness of the Kalman filter, It
is shown that classification accuracy is dependent on certain filter parameters, the parameters
which determine npdating rate, interaction, etc. We also show that there is essentially no
change in classification accuracy when the updating is computed after every line of data, rather
than after each data point.

There appear to be two ways in which the Kalman filter increases classification accuracy.
One way is Lo updaie the means to follow rapid changes in the data, such ag might oceur in data
from adjacent fields of the same class. The other way is to update at a slower rate so that
the updated means adjust for data changes such as those caused by atmospheric changes.

Feature extraction, whereby the dimensionality of the multispectral data is reduced in such
a manner that there is no significant loss in classification aceuracy,is also discussed. A previ-
ously used method, feature selection (use of a subset of spectral channels), is one way to im-
plement feature extraction. A greater reduction in dimensionality may be obtained by use of a

subset of linear combinations.

The general problem of finding a suitable subset of linear combinations is included here,
Part of the general problem is that of selecting a distance measure, and one particular dis-
fance measure is recommended because it is more closely related to classification accuracy
than some of the more popular distance measures.

7
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Limited test results show that a subset of 3 linear combinations can produce a higher classi-

fication accuracy than a subset of 4 spectral channels.
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INTROD%JCTION

Multispectral scanners, carried aboard aircraft or spacecraft, are being used to survey a
wide rémge of earth's resource and environmental parameters. The Environmental Research
Institute of Michigan (ERIM) is engaged in a broad-based research effort, developing and apply-
ing practical techniques of extracting information from the data generated by these instruments.
Considering the spacecraft case for example, the scanner field of view sweeps laterally across
the terrain, and, as the spacecraft moves forward, successive scans completely cover the scene
below. The spectrum of solar radiation reflected by the terrain is sensed by the scanner. In
particular, the scanner records, for each resolution element in the scene, a data vector (signal)

whose elements are proportional to the radiance at each of several wavelengths in the spectrum.

The processing of these data to extract information from the scene may be considered under
two broad categories: classification procedures and estima'tion procedures. In estimaﬁon, we
attempt to answer questionsg of temperature, moisture, or biomass for each resolution element,
In classification, we aitempt to decide for each resolution element (data vector) what igs the
class of material present. The remainder of this report is concerned with elassification pro-
cedures, and to focus on a specific problem, with the classification of major agricultural crop
species such as corn, wheat, and soybeans. We wish to focus attention on an adaptive classifier
technique based on the Kalman filter although we also discuss some related topics such as

feature selection and preprocessing,

We have found through experience that, for a homogeneous class or gubclass of materials
on the ground, a Gaussian distribution is a useful characterization of the distribution of data
points from that elass of material, so that the mean vector and the covariance matrix are
sufficient parameters to use as input to a classifier [1]. We have used a variety of classifiers —
maximum likelihood, linear decision trees, shortest distance, etc.—based on this mean and

covariance description for each class or subclass of material,

We have also found through experience that there are variations in the mean and covariance
matrix as we consider data from different flights, and even from different fields of the same
class near each other [2]. These variations of means and covariance matrices are due fo
changes in sun angle, amounts of haze, cloud and cloud shadows, moisture and fertilizer con-
tent of soil, variations in planting time and development rate for crops of the same type, and
differences in planting density, to name most of the causative factors. One variation which is
always present is the dependence of the reflectance of the crop and of the {ransmission and
scattering effects of the atmosphere on angle of view (scan angle). Thus, the mean and covar-
iance of the signal from a particular crop tend to be a function of scan angle even within a par-

ticular homogeneous fieid.
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Because these variations reduce classification accuracy, several parallel research efforts

FORMERLY WILLCW RUN LABORATORIES, THE UMIVERSITY OF MICHIGAN

are being carried out at ERIM to develop methods to compensate for the variations in the means
and covariances. One approach is based on in-scene references where changes that occur in
selected fields are assumed to reflect changes in all of the data [ 3]. A second approach uses
functions of the data, such as ratios of channels, for classification [4-7]. Generally, functions
cannot be found that are completely independent of atmospheric or ground cover changes, The
third class uses radiance and reflectance models to estimate and account for the changes that

are oceurring [ 8-10].

The method being discussed here is that of making adaptive corrections [ 11, 12]. In this
approach, the mean vectors are slowly updated based on the decisions made by the classifier
and on the actual values of the individual data vectors which are classified. The approach is
based on the following idea. Suppose a sequence of observations {data vectors), Zj’ Zj+1’ c
were all recognized as material class A by the ciassifier, but that these observations tended to
cluster to one side of the current estimate of the mean, By of that material class. This would
provide us with some evidence that the mean of the material class A had shifted. A decision-
directed adaptive clagsifier is one which automatically adjusts the value of u A S0as to bring it

closer to the current observations which were clagsified as material A.

We would like our decision-directed adaptive classifier to take account of some additional
considerations, The amount by which we allow a signature to be modified in any particular up-
dating cycle may be different in different speciral channels. Also, a particular crop may not be
observed for some time, and during that time the true mean of that crop, along with the means
of other crops, may shift. Hence we would like to be able to adapt all signatures based upon

the obgervations and classifications of one or a few of them.

In practice, regolution elements often overlap two or more different crop types, producing
an observation far from the mean of any particular crop class. We would like to avoid using

these observations as well as ""wild" observaiions from any other cause.

Kalman filter theory provides a framework within which these considerations and others

can be combined into one systematic approach [12, 13].

The Kalman filter ig an iterative filter, especially useful for digital computation, that pro-
duces an estimate of a time sequence of state vectors from a corresponding time sequence of
measurement vectors. In the simplest application,five elements must be defined. These are:
(1) the state vector, (2) the measurement vector, (3) an observation matrix relating the state
vector to the measurement vector (assuming no measurement noise) by a linear transformation,
{4} 2 covariance matrix describing additive noise in the measurement, and (5} a covariance

matrix describing the statistics of the successive differences in the state vector.

10
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In order to apply the Kalman filter to remote sensing data, we must make an association
between the elements of the Kalman filter and elements of the classifier. Thig can be done in

a number of ways, one of which is now described.

Assume that the most important statistics to update are the components of the mean vector
of each material class, and that we will update after each single observation. Then we make

the following identifications.

{1y The mean vectors of each material are combined into a single vector identified as the
state vector, X The initial condition, X is given by the initial training data for each
crop. '

{2) 'The observed data vector is identified as the megsurement, Zt‘
(3} The classified output (2 recognition vector) is used to produce a matrix, H, of zeros
and ones {a spotting function) which selects the correct components of the state vector

to provide a relationship between the state vector and the noise free measurement,

(4) The covariance matrices of all the signatures are averaged. This is identified as an
average estimate of the measurement neise covariance, R, as required for the Kalman
filter.

(5) An augmented matrix is formed by replicating and scaling the matrix R. This augment-
ed matrix is identified as the covariance Q of the sucecessive differences in the state
vector, Covariance § is assumed to be a simple function of R, and this assumption
results in significant savings in computation time, since matrix inversions are not

required for each update, and the computer memory requirements are minimal.

In the remainder of this report, we shall describe in some detail our approach, starting
with the basic formulation of a Kalman filter. The basic formulation is then expanded to in-
crease its versatility and utility. We shall describe the adapting procedures used previously
and compare these procedures with the present formulation. We shall also show some test
results from two test sets which demonstrate some of the capabilities of the new procedure.
The appendices describe the mathematical background to the Kalman filter, A separate section
is included to present the theory and some test results obtained by using subsets of linear com-
binations of channels. Limited test results indicate that the use of a subset of linear combina-
tions may be a feasible method of reducing processing costs without any sacrifice in average

classification accuracy.

11
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3
USE OF A DECISION-DIRECTED KALMAN
FILTER FOR ADAPTIVE PROCESSING

In this section, we shall show a general formulation of a Kalman filter and discuss in qual-
itative terms the way such a filter may be used to update the signature mean vectors. Various
terms of the egquations can be identified in ways we will demonstrate with observed phenomena.
Next, we shall simplify the equations into a basic form and show explicitly how one would use
them to update the mean vectors; this updating depends upon certain statistics of the data. One
possible approximation to the statistics leads to a simplification of the equations along with
greatly reduced computational and memory requirements of a general purpose digital computer.
Finally, we shall show some extensions of the simplified filter that appear at this time to be
most useful. In the discussion of the Kalman filter that follows, we shall isolate the filter from
the remaining processing operations. When we say that a quantity {e.g., a decision) is known,
we mean that that quantity is obtained irom another portion of the processor or possibly from

separate measurements.

3.1 BASIC FILTER EQUATIONS
We shall begin our discussion with one version of the Kalman filter equations. Consider
the linear vector difference equation

% " P11t Tgk-1%-1 F feer T Vi1 (1)

The purpose of the Kalman filter is to estimate the state vector Kyes The matrix @k k-1 is
known as a transition matrix and has the properties
cbk,k =1 (2)
e (3)
sl -9 ()
kj ik

@k k-1 can be used to express known multiplicative changes in the state vector. The vector

k,k—ll The
. can he used to introduce known

w is known as a control vector and is related to the state vector by the matrix T
vector fk is a forcing function, which, together with @k k-1
additive and multiplicative changes to the state vector. The vector Wy is a sample frem a

random process with statistics:

E(w,) =0 (5)
vl wilz ‘
E{ww; )= kak,j (6)

12
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where E( ) denotes the expected value, and Qk' is the covariance matrix of the staté variation,
In addition to the state equation, we have a measurement equation:
7, = HX + v : (7)
where Zy is the measurement vector, which we can identify with the data

Hk is a known observation matrix

Vi is measurement noise with the properties:

E(Vk) =0 N {8)
E(vkv§) - Rby (9)
E(vkw;) =0 : (10}

where Rk is the covariance matrix of the measurement noise. Equations (1) and {7) define a
general formulation of an estimation problem which we could use. We shall identify the com-
ponents of the state vector Xy with the means of all of the materials, The random vector W
represents inter- and intra-field variations that have been observed in the data, as well as
gradual changes caused by phenomena such as atmospheric, sun position, and scanner vari-
ations, It is in the estimation of Qk, the covariance matrix of Wy that we were able to simplify

the processing requirements,

Let us now formulate the complete Kalman filter problem, with a simplified form of Eq. (1)
k= Xk-1F ka1 (11)
The recursive estimate ‘Qk of the state vector Xy is

e = S RS SCNES: %' (12)

The matrix Kk is known as the Kalman filter and minimizes E(f{{t'"k), where

/\

-~ A
X =X

k- %k " %k {13)

is the difference between the true state vector X and our egtimate :f:\k. The symbol E denotes
the expectation operator. We can expect Kk to depend on Hk and the covariance matrices Qk
and Rk It is shown in Appendix A that

-y o< )

where

13
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. - L]
Py =P - KHP (15)

D =P

k = Pt " k-1 (16)

The recursion relationship is defined by Eqs. (12, 14, 15 and 16). When & new measurement

Zy is received, the computer has Pl'{ and Qk—l in memory from the previous ca,lcu/l\ation, We
also know the observation matrix Hk' We have all of the information to compute x, , Pk and
Pi”l and are ready to repeat the process for 1

Two features of this recursion relationship should be clarified. We assume that we know
Hk’ which means that we know the particular material or class that was present when Z, was
measured. But this is not the case,because allwehavepresent isthe decision[15] or estimated
mixture [ 16-18] for that measurement, We shall assume that we have the decision available,
and shall use the decision, as though it were correct, to formulate s This use of the decision

in the Kalman filier has been called decision-directed.

The other feature to clarify is the first step of the recursive relationship. When the train-
ing data is at thebeginning of thedata tobeprocessed, we canlet Pobe the zero matrix and §0 be
the means of the sighatures, When thetraining data is not near thebeginning of the data, we must in-
crease Pk to reflect the variations in the mean that could eccur prior to processing of the
training data.

One of the modifications to the basic Kalman filter equations which we shall describe in
Section 3.9 and Appendix B shows a way to look ahead so that the information from training

fields downstream can be used for the k-th observation.

We next consider the covariance matrices to be uzsed. For the matrix Rk associated with

the measurement noise Vi» We shall use the average covariance matrix of all of the signatures.

If each covariance matrix for each of the classes is Ri’ i=1, ..., m, then we shall use
1 &
R =) R =R (17}
i=1

Two assumptions are inherent in Eq, 17: (1) the covariance matrices are sufficiently similar
that one common matrix can be used for all classes, and (2) that all of the variation measured

in the training data can be attributed to measurement noise rather than state variations. The
use of the first agsumption is justified when we find an improvement in recognition performance.
The second assumption will be shown not to be restrictive because the important relationship is

the measurement covariance matrix Rk relative to the state covariance matrix Qk'

Qk is the covariance matrix of Wi the state variation. Because the state vector Xy is

composed of the signature means, Qk describes the slow variations of these means. We must

14
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describe how the means of each material can vary and also how the variation in the means of
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different channels are correlated. We shall assume that Qk can be written in the form
Q, = f®R=Q (18)
where the operation & is the Kronecker product

BllR 912R ‘s

5@ R= _ ‘ (19)

of partitioned matrices. As we shall see, our assumption of the form of Qk will lead to a sim-
plification in the processing.

3.2 REDUCED EQUATIONS
Let us now see how this simplification arises, We first note that for our decision-directed
filter, we can write Hk as

t
H =M @1 {20}

where In is the identity matrix with rank n, the number of channels, and Mk is a column vector
with a one indicating a decision andm-1zeros. For example, if the fifth data point were classi-

fied as the third of six possible classes, then

0
0
i1
M, =| g (21)
0
0
The following theorem is needed for the simplification. Let
t
L _ 2o
P1—¢1®R, Hk“Mk®1n’ Qk—8®R {22)
Then
L
Pk = "‘bk @R {23}
Where
t
¢
Pre1 = % ’EE'H*EE* d (24)
kmm+1

15
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Prem = PreMy (25)

¢

¢
kmm - M My (26)

We shall prove this theorem by induction, We first note that it is true for k¥ = 1. We assume
the theorem true for k = ¢, Then, from Eq. (14}

K, = (6, ® RAM, ® In)[(M; ® 1)(¢, ® RIM, ® 1)+ R]-l
$
- 1__TeM
=(9qu © Rlennt D) © R " F it ® I . (27)
When we evaluate Eg. (15), we have
¢ ¢ b
M t oM oM
P =¢ ®R-—L®I>M®I(¢ ®R)=¢-———)®R (28)
@ o (¢aMM+1 n ( “) @ @ OyMM+1
From Eq. (16} we have
t
LU
1 _ _ oM oM
Paﬂ"Pa*Qa-Qf’a'm*%@R (29)
Q.E.D. We can now evaluate Eqg. (12).
X =% +(—¢km @1 )(z - v} (30)
kR Tk-1 P mma+1 ni "k “k
A
where y, = H X 4 (81)

is the estimate of the mean of the material that was recognized,

The updating equations are now contained in Eqs. (24) and (30). We need to store an
wnx 1 state vector ;;‘k’ which is already stored as part of the signatures, and an mxm sym-

metric matrix ¢ - We also need #, which we shall assume has the form

1 {32}

Only two scalars are needed to determine 9. Because the updating equations are now indepen-

and 4,. We shall choose

dent of R, we can determine the operation of the filter by choice of 81 9

16
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a value of 82 in the range 0 = ¢_ < 1, because 92 determines the amount of correlation of the

variations in the signature meazns that we have assumed. We shall now develop a simple ex-~
_ planation for 81.
3.3 UPDATING RATE ,

Let us assume that we always recognize the first class. Let us also assume that the
measurements z, are all zero vectors for a sufficient number of samples so that our estimate
of the first mean vector is also the zero vector. We now let the measurements zy become a.
vector composed of ones, and compute the number of updates needed for the estimate of the
mean to equal 1 - e_l. We shall call this number of updates the updating rate and show that
it is simply related to 91.

We need to considgr only the first element of Qk and the elements in the first row and
column of # and B - From Eq. (24), the ¢11 element of ¢, approaches a constant value when

¢k+1 - ‘bk’ or

2
e, (33)
¢11 +1 1
\[?
) 91 + 91 + 481 .
ucTy o (34)

The updating equation for the first element of X is

A A A
1,1 = Fk-1,1,10 Y M8 T X gy y) (35)
where
¢
11
by 1 -

Welet® =0, andz_=1,k=1,.,., then, from Eq. (35), we have

Al a2
ﬁ- 91+481
9 .

A
= (37)

xk11=[1-(1-a)k]%1- 1+

For the values of ¢ that we use (81 = 10‘3), we can approximate Eq. (37) with

fegp =1 - (- Vo) (38)
Thus, when
1

% (39)
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we have
A o1 -1
Ky SLoe (40)
For example, when 91 = 1(}_3 and k = %, the difference between the results obtained by using
a

1
Egs. (37) and (40) is 1.5 % 10_5. We conclude that Eq. (39) is sufficiently accurate for our

PUrposes.

3.4 OTHER FORMS OF UPDATING

Let us look briefly at the previously used adaptive procedures and see how ‘they can be
interpreted in terms of our Kalman filter formulation [7, 8]. Two methods of adapting the
signature means were examined: non-interactive and interactive. The non-interactive up-

dating can be implemented by setting

P = %Im (41)
The scalar W was used to vary the updating rate. Note that qbk is independent of k., This im-
plies that there is variation only in the mean of the material that was recognized, and all other
means did not change. For approximately equal numbers of decisions for each material, this
method should produce estimates of the mean vectors that are similar to those obtained by the
basic Kalman filter,

For the interactive method, we would set

) Py Pg
Py Py
1
WEW-T L, P (42)
Py By

where Py i=1,...,mis a scalar constant for each material, Again, cf:-k is independent of
k. In addition, (f:k is not symmetrical, implying a lack of symmetry in the covariance matrix
P Thus, we must conclude that either the interactive updating is non-optimal or the model
described by Egs. (1) and (7) is not the only reasonable model for updating. However, the
interactive method was developed specifically because random multiplicative, rather than
additive, changes in the mean vectors were assumed to be present, We should note that the

interactive method is easily expressed in the Kalman filter formulation.
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3.5 LINE-BY-LINE UPDATING

We have now finished our discussion of the simplitied Kalman filter. We have developed
a filter that can be used to update the mean vectors each time a data point is classified, As
we shall see when we discuss test results, a relatively slow updating rate will produce the
lowest classification error rate. Knowing this, we are led to consider the possibility of up-
dating after each line or portion of a line, rather than after each data point, Our motivation is
to reduce processing time, even though the updating requires fewer caleulations than does the
decision rule. One might hope to save additional computer time by using a linear [ Refs, 20, 21]
rather than a quadratic (maximum likelihood) decision rule, The problem with using a linear
decision rule with a Kalman filter is that some computation for each point usihg mean vec~
tors and covariance matrices is required before one ig ready to apply the rule, This com-
putation is only required once for non-adaptive processing, and therefore little increases the
overall processing time in the non-adaptive linear decision rule case. But it appeai-s this
cdmputation is time consuming in the Kalman filter point-by-point updating case so that little

if any time is saved.

3.6 PREPROCESSING

We can add another function to our filter. We have not considered variations in the data
that are dependent on the angle of view (scan angle). One would like to preprocess the data to
remove or reduce any scan angle dependence before making classification decisions. It is not
unlikely that whenever the mean vectors change, the scan angle dependence and the required
preprocessing would also change. Therefore, we have a motive for using the Kalman filter to
update the scan angle correction function as it updates the mean vectors.

Many forms of preprocessing have been studied. One is particularly suited for inclusion
in the Kalman filter equations, One can estimate the parame_ters of a polynomial function of
scan angle (a separate polynomial is needed for each data channel) that would be added to the
data so that the resultant sum would be approximately independent of angle. Another use of
the polynomial would be to subtract it from the mean vectors, Either use produces the same
decigion. One can either use one polynomial to be applied to all classes or separate polynomials,
one for each class, The latter methed is preferred when we expect the various classes to have
different angular dependences. A disadvantage of the latter method is that we must use a re-
duced updating rate, because there are more parameters to estimate (more polynomials) and
when we use multiple parameters to describe any mean vector, there is a reduced maximum
error that can be tolerated in our estimate of each of the parameters before classification

accuracy is degraded rather than improved,
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3.7 CONFIDENCE FACTOR

In addition to updating every portion of a line of data and estimating a scan angle correc-
tion term, we shall make use of a confidence factor. A confidence factor has already been used
successfully [Ref, 12|. The purpose of the confidence factor is to weight the contribution that
each data point makes to the updating by a number that represents our confidence that we have
made the correct decision. A point very close to a mean vector is weighted more than a more
distant point. We would be irying to reduce the effect of using a decision-directed filter which
occasionally used the incorrect decision, We have no model to use to determine the weights,
but chose a method that is computationally simple. Because we always compute the )(2 value
for each data point after a decision is made or during the decision process, we' éan use as a
weight the probability (from the xz digtribution) that a data point from a Gaussian distribution
would have the calcutated value or larger. Thus we are using the complement of the }(2 ac-

cumulative distribution function.

3.8 REVISED UPDATING EQUATIONS
We shall now introduce a formulation that we chose to augment our first improvements to
the basic Kalman filter. We shall model our system by Eq. (11), although we now have the

following form for Xy

Mk

X, = mk (43)

11

Pyk

where yu ik is the mean vector of the i~-th material, and P, is the i-th vector (one element for

ik
each channel) of the polynomial, when the k-th data point was measured. We replace Eq. {7) with

Zei T Ppi® t Vi : (43)

where the subscript i refers to the measurement at the i-th scan angle ot.l. We shall use oz.1 to
determine Hki:

Hki = (“:ci O!iotf .. .cuf) @ In 7 {45)
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To better understand Eq. (45), let us evaluate Eq. (44) if the j-th material were chosen. We
would have

2
Z +oPy +o Py +.. {46)

v
1K oy P

ki~ Pk vk * Vkj
which means that we assume that we are measuring a random vector (“jk + vij added to a
polynomial function of angle that is independent of the material. So that we shall be consistent

with Eqs. (8}, (9) and {10), we get

E(v ) =0 - (47)
t

E (Vkivlj) = %1% (48)

E(YR]'WD =0 | | (49)

We now rewrite Eq. (12)
A N A
Re=%e 1t KD Cui Pt~ By Xy (50)
i=1

We have included the confidence factor Cki for each data point 2y and show our intention of
updating after every N data point. The Kalman filter Kl( will differ from that used previously,
We also have to use a new interpretation of Wy, Decause it now represents a change that could
occur after N data points rather than after each data point. We shall now find the Kk that we
should be using. Our method will be to show that we can rewrite the new equations into the
same equations that we had previously, and then to use the same solution. Our new filter will
have the same form as the previous one, although the terms will be interpreted differently.
Actually, our method of solution sounds more complicated than it really is. We define

N
H =) Cyify (51)
i1

N .

% =) Cuiki (52),
=
N .

Y= ) OV (53)
i1

M-S Mt ST o (54)

K kiMi/ S+ ) C®

= i1 =
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From Egs. (51) and {54), we have
H=M I (55)
i k n

We are now in the position to rewrite Eqs. (44) and (50).

z, = Hkxk + vy (56)
Fas A A
Xy = Xeq Kl - Hx ) (37)

We now use Eq. (48) to compute the stafistics of our new Vi

E(Vk) =0 (58)

N
£y 2
E(vkvj)— 5ij1<2 :cki (59)
=

Thus our updating equations become

]
A A km n
T s 2 & In (zk - Hkxk-lJ (60)
¢kmm +Ecl‘:i
i= .
f
é,_

¢l{+1 = cpk - ‘_._Lw + 8 (61)

N 5 k
Pemm +chi
i=1
where, as hefore,
$em = DMy (62)

@ =M

t
kmm k¢km (63)

Note that we use Eqgs. (51), (52), and (54) to find szk and M, . When we clasgify the data, we
replace each mean vector in the signatures with the sum of the mean vector and the polynomial

vector,

We have one remaining step, that of replacing Eq. {32) with a new estimate of Bk. Our

choice is
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1 ty
8y 1 o

5 = Ny | (64)
0 71ly

We now have three parameters, 91, 62, and Y1 that we can use to determine Bk. We chose to
use Nﬂl as a multiplier so that we could interpret 61 in the same way we did previonsly. We
are also assuming that the mean vectors and the parameters of the polynomial are uncorrelated,

as well as the vectors of the different orders of the polynomial,

We could determine the operation of the modified Kalman filter by the three parameters
({Jl, 52, and yl) indicated in Eq. (64). We choosezto add a fourth parameter, a confidence '
scale factor, which we used as a divisor of the X~ values for the data points before determining
the Cki confidence factors. With this fourth parameter we can alter the rapidity with which the
confidence factor decreases as the data points become more disiant from the mean vectors.

There is one problem when implementing the reduced updating equations, When the scan
angle correction terms are added to the state matrix, we must be sure to have sufficient in-
dependent measurements so that we can estimate each term of the state vector.” Without the
scan angle terms, this independence requirement is met when the Hk vary {(as they normally
do). With the scan angle terms, however, extra precautions are needed. We have chosen to

update V + 1 times per line for a V-th order polynomial.

3.9 USE OF AUXILIARY GROUND TRUTH

Before concluding this section, we shall consider a method of reducing an undesirable
characteristic of any updating method, including the Kalman filter, known as signature capture.
In multispectral scanner data processing, signatore capture occurs when the mean of one class
actually describes the data from a different class. We would tend to recognize data from one
(or more) material incorrectly, clearly an undesirable situation. Of course, the same mis-
classification can occur without updating, and it is possible that the updating may eliminate
the problem. As we shall see, we tend to decrease the probability of misclassification by in-
creasing the updating rate up to a point. There appears to be a maximum rate beyond which
the probability of misclassification increases. The increase appears to be caused by capture.
We believe that we reduce the probabilities of both misclassification and capture when we use

the confidence factor, Another method of reducing the probakility of capture is now described.
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One method of processing data does not use updating. Training fields are located near the
beginning of the data collection pass to be processed, and auxiliary training fields are identified
throughout the run, so that the signatures can be changed occasionally. We could use a variant of
the same technique. Hopefully, fewer auxiliary training fields would be needed, because the up-
dating fulfills the task ol adapting the signatures to the changing statistics of the data. The
main purpose of the additional ground truth would be to reduce the probability of the occurrence

of a capture.

It should be possible to reformulate the Kalman lilter equations to use the additional ground
truth statistics. However, we lose nothing by finding the optimum filter for a separate formu-
lation. The derivation of the filter equations for this case can be found in Appendix B. A brief

description of the change in the updating characteristics is in order here.

The most obvious change is that the complexity of the filtering equation is increased. We
have not tested this particular modification to the filter, so we are not in a position to evaluate
the extent of the increase in complexity. Another change is that we have formulated the prob-
lem so that the updated mean of a class is exactly the mean of the training field for that class
when the center of the field is being processed. The influence of a training field decreases as
the distance from the training field to the ground represented by the data being processed in-
creases. We could have assumed some uncertainty in our knowledge of the mean vectors of

the training fields, but we saw no advantage in doing so.

One requirement that we have placed on the operation of all of our formulations of the
Kalman filter is that the training fields be located near the beginning of the run, We may be
able {o relax this requirement when we use the initial training fields themselves as auxiliary

training fields.

24



D ERIM

FORMERLY WILLOW RUN LABORATQRIES. THE UNIVERSITY OF MICHIGAN

4
EXPERIMENTAL EVALUATION OF SOME KALMAN FILTER CONFIGURATIONS
The purpose of this section is threefold: (1) to show the results of some tests that were per-
formed to validate the theory presented in the last section, {2) to describe problem areas that
are not in our analytical model, and {3) to list the values of the parameters, e.g., 91, 92, that

should be used in the Kalman filter.

An important consideration that was faced was that of choosing data sets. Previously, test-
ing of adaptive processing at ERIM was limited to aircraft data over the Indiana C-3 area gathered
in 1966 with the M-56 scanner [ 11, 12]. This data was originally chosen because it had been
noted that classification accuracy tended to be significantly better near the beginning than near
the end of the flightline. Tt was hoped that this loss of accuracy, which was observed in a short
run, would be representative of a loss that might occur in processing a long data run,

There were two disadvanta,g.es to the use of this data: (1) all of our test had been restricted
to this one data set, and (2) thedata were collected with an outdated multispectral scanner., There
was one advantage, however, in the fact that the previous tests had been made using this data. We
would be able to compare the Kalman filter results with the previous results. This comparison
would be useful in ensuring that the Kalman filter was operating correctly.

4,1 C-3 TEST RESULTS

We chase to perform our preliminary tests on the C-3 data, and to use a different data set
ta substantiate our findings, We believe that this choice was a good one, even though we were
unable to make a decisive comparison between the operation of the Kalman filter and the tech-
niques used previously. Previous evaluations had been made by manual analysis and compar-
isons of digital recognition maps. This method was adequate for its purpose, that of demon-
strating the ﬁsefulness of adaptive processing in a clear-cut case. The method lacked the

ability to differentiate between small differences in performance.

Our first task was to devise a method of comparing different decision technigques that would
improve sensitivity to small differences. We felt the need to display the recognition results so
that we could readily compare a given adaptive technique with any other, and could find any
peculiarities that might be present. One method that we tried is demonstrated in Fig. 1, where
we have ghown the classification accuracies that were measured for each field relative to the
along-track position of the field. To obtain our figures we had to identify portions of the data
with specific fields, using only fields for which ground truth was availahle. We were able to
eliminate from the presentation classification results for fields for which no ground truth or

signatures were available, as well as field boundaries,
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Figure 1 shows the classification results that were obtained when no adaptive processing
was employed. There are four fields for which the classification accuracy was less than 10,
There was no capture, obviously, because there was no adapting, We believe that the data from
those four fields did not follow a general processing aggumption, that the data from each class
would have statistics similar to those obtained from the training data. Tt appears that it is
rather difficult to define capture quantitgtively, because capture is normally considered to be

a result of adapting.

We have presented two additional classification results in Figs. 2 and 3. Both figures were
obtained using a basic Kalman filter, updating after each data point. The difference between the
two figures is the result of using different values for the parameters @ 1 and 82. We found that
we had difficulty in choosing which set of parameters would he preferable. In fact, we could not
always convince other investigators that either one of the updated results wag preferable to those

obtained without updating.

Clearly, another method was needed, We computed the mean and median values for the
recognition aceuracies shown in Figs. 1-3. In finding the median, we noted that the value we
obtained dépended to some degree on the recognition accuracy of one field. The mean, on the
other hand, did not exhibit this phenomenon, and probably better represents some user require-

ments. Consequently, we chose the mean elassification accuracy as a measure of performance.

A total of 27 fields were identified for our tests from the C-3 data. Four of the fields, one
each for corn, wheat, pasture, and soybeans, are used for training. Initial tests indicated a
sudden change in the characteristics of the data after the first 14 fields. Consequently, we have
subdivided the 27 fields into three groups: (1) the four training fields, (2) the ten non-training
fields in the firgt 14, and (3) the remaining 13 fields. There are materials represented in the
data other than the four materials chosen for testing. This data, when improperly classified

as one of the four test materials, provides false input to the Kalman filter.

For our initial tests, we used the Kalman filter that updated after each data pﬁint and did
not uge a confidence factor. Qur first tests were made with different values of 91 {which deter-
mines the u_pdating rate) and 92 {the interaction of updating the means of different classes).

In Table 1 we show the classification accuracies obtained for different values of 92 with 21
constant. We include the accuracies obtained without updating for comparison. The results
show that the accuracies are not very dependent on our choice of 92. Consequently, we decided

that we should he using 92 = (.7. Note that the accuracies are higher when updating is used.
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The effects of using different values of 61 are shown in Table 2. Again we include the

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAMN

accuracies that were obtained when no updating was used. Improved accuracies resulted from
all values of 81 except 91 = 10_4. It appears that 10_4 is too large a value for 61 (the updating
rate is too large). The loss of accuracy may be caused by capture, which can occur most

easily when 81 is large.

There appear to be two trends in the data, one for the last 13 test fields, where a smail
value of 6‘1 {10_7) is preferable, and the other for the first two categories, where a larger
value of 4 (10_5) is preferable. We have one explanation for these trends. When we test the
first two categories, we may be adapting the means to the local inter - and intra-field varia-
tions. On the other hand, the accuracies obtained from the last 13 test fields may indicate
that for gradually changing data, it is better to update slowly and not try to follow rapid data
changes, If this explanation is correct, it might mean that one should use a combined rapidty
and slowly changing filter characteristic, which would be accomplished by using a Kalman

filter designed for non-white state variations.

A comparison was made between the accuracies obtained when updating every line and
every point. The results are shown in Tabie 3. We do not believe that the differences in accu-
racies are significant, and have concluded that updating every line is the preferred methoed

because of the reduced processing time.

Our final tests on the C-3 data set were made to evaluate the confidence factor, updating
every line. The results are shown in Tables 4 and 5. In Table 4, we show the results for the
first 10 test fields, for different values of 91 and the confidence scale factor. The values
shown for a confidence scale factor of infinity are repeated from Table 2, where the confidence
factor was held constant at unity (no confidence factor). There appears to be no improvement
ta be gained by using the confidence factor, with the exception of 91 = 10“4. This exception does
not appear to be of interest, however, because greater improvement can be gained by letting

8, = 107 and not using the confidence factor,

In Table 5, we observe thai we can gain accuracy by using the confidence factor. We are
led to the conclusion that the confidence factor is useful in following slowly varying changes in
the data, but not rapid variations. The choice of scale factor that one would use can be seen

to depend on the value of 8,. When the scale factor decreases, the updating is more dependent

. 1
on data values closest to the means of the classes. Apparently this dependence has the effect

of decreasing the probability of capture, so that larger values of f, can be used.

4.2 EATON COUNTY TEST RESULTS
A second data set that we tested was gathered during an ERTS underflight at 5000 feet of
Eaton County, Michigan on 25 August 1972. This data set was chosen because it was gathered
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TABLE 1. EFFECT OF 44 ON RECOGNITION

ACCURACY. 6, =107

62 Values
0.3 05 01,
Training data .93.3 93.5 93.6
First 10 test fields 7.2 T7.3 7.4
Last 13 test fields 62.0 62.4 - 64.2

No Update

90.5
68.9
59.0

TABLE 2. EFFECT OF #1 ON RECOGNITION ACCURACY. 45 = 0.7

a 1 Values
10-4 10"5 10-'6 10~ No Update
Training data 68.7 . 93.9 03.6 91.6 90,5
First 10 test fields 60.6 81.7 7.4 2.2 68.9
Last 13 test fields 11.8 61.8 64,2 71.6 59.0

TABLE 3. COMPARISON OF PERCENTAGE -
RECOGNITION ACCURACIES WHEN UPDATING
EVERY POINT AND EVERY LINE FOR TEST -

FIELDS. 8 = 1078 and 8q =0.7.

Point
First 10 test fields .4
Last 13 test fields 64.2
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TABLE 4. AVERAGE PERCENTAGE CORRECT
RECCOGNITION FOR FIRST 10 TEST FIELDS UP-
DATED EVERY LINE USING CONFIDENCE

FACTOR
Confidence 6, Values

Scale - N
Factor 107 1079 1078 107"
60.6 81.7 77.4 72.2

4 — 63.5 66.7  68.7

_ 66.5 69.0 69.4

0.4 66.7 69.5 69.5 69.1
0.25 68.2 78.1 69.3 69.0

TABLE 5 AVERAGE PERCENTAGE CORRECT
RECOGNITION FOR LAST 13 TEST FIELDS UP-
DATED EVERY LINE USING CONFIDENCE

FACTOR
Confidence 8y Values

Scale

Factor 107 1070 1078 1077

© 11.8 61.8 64.2 71.6

4 72.0 73.4 70.5

1 72.0 77.0 63.1

0.4 72.6 74.5 61.7 59.7

0.25 72.3 63.9 60.3 59.2
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over one of the longest (21 mile) continuous ground areas of any of our data sets and there was
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sufficient ground truth available, The first 11 miles had extensive ground truth, the remaining
10 miles less, The first portion of the data could be used to test both the ability of the Kalman
filter to follow rapid variations in the data and the updating of the scan angle correction (pre-

processing), All of the data could be used for testing for slower variations.

Tests were made to determine whether the results obtained with the C~3 data would be du-

plicated. The first consideration was the choice of 6‘1 and 92 to provide highest classification

1 cannot be made directly, because 81 must be in-

terpreted differently in the two data sets. We shall avoid confusion by calling the 81 variable

accuracy. A comparison of the choices of §

for the second data set 8’1.

When we tested the C-3 data set, we used every second point and every fourth line. Our
updating rate becomes 1/¥8, points processed, which is equivalent to 8/ \fel data points or
B/wael data lines (N data points/line). One method of comparison is to use points per update

when a filter is designed for rapid changes in the data and to use lines per update otherwise.

We used every point when we tested the Eaton County data. The variance of each state
variable was agsumed to be Nt?l' even though we updated the state vector three times each line.
The updating rate now becomes 1/3vNg, Ilines and N/3 Nﬁ?é points per update. One should

1

compare 9'1 with 0.62561 when considering rapid updating rates and with 0.2561 ctherwise.
These factors were obtained by knowing that there were 226 and 360 points per line for the C-3

and Eaton County data, respectively.

We used 25 fields located throughout the first eleven miles of the area for our first series
of tests. There were five classes: corn, trees, beans, wheat, and bare soil. Some results of
the tests using data that had been preprocessed using -one of our standard techniques (ACORN,
Ref. 7) can be seen in Tables 6 and 7. We obtained Table & by using a confidence scale factor
of 1 and different values of 9'1 and 62. The best choice of 82 is zero, a clear difference from
the value of 0.7 that was hest for the C-3 data. The value of zero for 92 is more consistent
with the assumption that we are adapting for rapid changes in the data. The choice of 0.7 for
02 for classifying the C-3 data may be an artifact of the techniques used in 1966 to collect and
gtore the data.

There is better agreement found when 91 and ¢} are compared. The numbers we compare
are @) = 1078 and 0.6258, = 0.625 x 1077 = 107729 we did not find more precise values for
optimum choices of 8}, primarily because each number in the table represents approximately
36 minutes of IBM 7094 computer time, with the exception of the no update (maximum likelihood

fixated signature) time, which tock 11.3% less time.
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TABLE 6. AVERAGE PERCENTAGE CORRECT REC-
OGNITION FOR 25 EATON COUNTY FIELDS USING A
CONFIDENCE SCALE FACTOR OF 1.0

82 Values

9'1 Values
1077 1078 No Update
67.7 86.3 82.6
0.3 49.3 85.4

TABLE 7. AVERAGE PERCENTAGE CORRECT RECOGNITION
FOR 25 EATON COUNTY FIELDS USING A CONFIDENCE

SCALE FACTOCR OF 0.25

Bi Values
1078 107" 1078 No Update
0 84.5 85.5 83.9
9, Values 0.3 84,7 84.3 83.0 82.6
0.7 54,9 60.3 74.3
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Table 7 was obtained when we used a confidence scale factor of 0.25, Again the best choice

that we found for 92 is zero, There is less agreement found after 91 and Bi are compared, be-

cause 0.6250, = 0.625 x 1079 = 1072204 454 8'1 =107, However, there is no appreciable differ-
ence in results between ()'1 = 10_’7 and 9‘1 = 10h6. We tried using a confidence scale factor of 4
8

with 91 =10 ° and 5‘2 = 0, but the average percentage correct recognition was so low {65.49)
that we did not continue using that confidence scale factor.

An additional test was made, which produced an interesting but unexpected result. For the
test, we used our linear classifier, which does not have any adapting feature. We measured an
average percentage correct recognition of 86.99, which is higher than that measured when we

used the quadratic decision rule with and without updating.

We do not feel that we have enough comparisons between the two decision rules to know
whether this improirement can be expected in most data sets. It may be that when we use the
linear decision rule with the Kalman filter, we may achieve even higher percentages, because
the linear decision rule may be more robust. An equally reasonable explanation is that general-
1y one cannot expect higher classification accuracy with a linear decision rule. However, we

favor the first explanation.

We have included Figs. 4 and 5 to show examples of the recognition maps that one might
obtain by using two different classification procedures. Figure 4 was obtained with our linear
decision rule on preprocessed data. The average percentage correct recognition of 86.99, was
“obtained from 25 fields located within the map. Figure 5 was obtained by using the Kalman

) . ' -8
filter with 8, = 10

‘ 1
the average percentage correct recognition was 86.3%, Thus, the two measured accuracies

y By = 0, and a confidence scale factor of 0.25. From Table 6 we see that

are essentially the same. When one compares the two figures, one might conclude that fields

tend to be more uniform in Fig. 5 (Kalman filter processing).

Cur tests of the preprocessing feature of the new filier were inconclusive, The previous
tests were made using preprocessed data. When we planned the tests, we discovered that two
additional operational techniques would be needed. We needed some initial values for the poly-
nomizals (one for each channel) of the scan angle correction, The technique that we used was to
use the filter to generate initial conditions by processing a portion of the data (200 lineg}, using
initial values of zero for the polynomials, and using such a low value of 81 that there was neg-
ligible updating applied to the mean vectors. The estimates of the polynomial parameters were

used as initial values for processing all of the data,

We also needed a method of obtaining signatures, including both first- and second-order
gtatistics.. The signatures that were used to obtain initial conditions were measured using the
data before preprocessing was applied. We do not expect that these statistics would match
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i EMER
FIGURE 4. LINEAR DECISION RULE RECOGNITION MAP
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FIGURE 5. KALMAN FILTER RECOGNITION MAP
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same signatures, but would have preferred using signatures of the data after it had been pre-
processed using our initial values for the polynomials. The average percentage correct recog-
niting that we measured for the 25 fields was 74.7%, when 81 was 10_7 and 74.3% when 0

10°%. The other parameters were: 9

was
1

=0, ¢, = 1.0, and the confidence scale factor was 0.25.

Without either preprocessing or updat%ng, thelre cognition accuracy measured 68.7%.

It would appear that we should have used another method to derive signatures. We also
have some doubts about the superiority of the use of the preprocessing feature, compared to
our standard preprocessing procedures to improve classification accuracy when only rapid
variations in the data are present. If is more realistic to expect improvement when there are
gradual changes, especially when the changes are caused by changes in the atmosphere or sun

position.
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5
FEATURE EXTRACTION OF MULTISPECTRAL DATA *
The data gathered by a multispecfral scanner must be processed, for example by recogni-
tion processging, before much of the information in the datz can be extracted. In carrying out
this information extraction it is desirable to reduce processing time to the extent possible.

One method for doing this is to reduce the number of channels of data to be processed.

. There are several ways to reduce the number of channels {0 be processed. For example,
one could reduce the number of spectral channels in the scanner itself. ‘This method has the
disadvantage that, because of changes in atmospheric conditions, changes in the spectral reflec-
tance of crops during various stages of growth, and other variable factors, one does not know

in advance of examining the data which spectral channels should be recorded.

A second method is to record all of the channels available, but to process only a subset of
channels. This method has been routinely used at ERIM in recent years. The training data are
used to decide which channels can be eliminated. We found that 4 to 6 spectral channels pro-
vide almost as much recognition information as do all of the channels (usually 12 of them) [ 20].

Investigation of a third possibility is reported here, namely, to form a subset of linear com-
binations of the recorded spectral channels [ 23, 24, 25, 26, 27]. The subset of linear combina-
tions can then be used in recognition processing just as if they were a subset of the original
channels. In this case;the training data are examined to determine which linear combinations
of channels to use. The subsets of linear combinations would then be calculated for each data

point prior to beginning recognition processing.

In many applications, it may be that a subset of 2 or 3 linear combinations will give the
same recognition information as if all pure channels were used. If the time required to calcu-
latethe linear combinations is small compared tothetime savings achievedin recognition result-
ing from the reduction in the number of channels, the advantage in employing linear combinations
may be substantial. With analog data available, the linear combinations can be formed at the .
time the data are digitized. For data in digital format, it may be convenient to form the linear
combinations when the data are converted into la format suitable for recognition, or during the

preprocessing operation.

A simple example can illustrate the formation of linear combinations and the performance
that is pogsible. Consider the problem of recognizing c;ne of four possible classes using one
linear combination of two-channel data. The data channels are assumed to be independent, each
with variance o>. The location of t‘h_e'mean vilues for the four classes is shown in Fig. 6.

The calculation'c‘)_f the average probability of misclassification for {his geometry was made by

assuming that a linear decision rule would be ised, that the data were normal and described

* The content of this section hag been [r)rresent.ed previougly, See Ref.[22§. -
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by the means and variance, (i.e., the covariance terms are zero) and that the a priori probabili-
ties of occurrence of each class are equal. The calculations were limited to pairwise evalua-
tions, whereby the probabilities of misclassification for each pair of classes were not affected
by the presence of the remaining class. The formation of a linear combination has the effect

of projecting the data into a subspace which in this case is just a line.

The calculation results are shown in Fig. 7, where the average probability of misclassifica-
tion is shown as a function of the angle between the abscissa and projection line that determines
the linear combination. The performance that would be obtained by using pure channels is found
for angles of 0% and 90°. The lowest average probability of misclassification oceurs for a linear
combination described by an angle of approximately 15°. Thus for this particular example, a
linear combination would be more desirable for recognition than a subset (i.e., a subset of one)
of pure channels. Notice that for some linear combinations the average probability of misclassi-
fication exceeds 1.0. This oceurs because of the pairwise assumption used in the calculation, '
whereby some points are misciassified in more than one way, and ail of the ways are counted in

computing the average.

A procedure for finding the best linear combination in this case might be to start with any
combination, and compute the average probability of misclassification. Then, the calculation
is repeated for a linear combination described by an angle close to the first angle. This pro-
cedure is then repeated, always with the angle close to that angle which in the previous com-
putation had provided the lowest average probability of misclassification, until a minimum was
found. For this example, where there are two minima, the lowest would be the one that would
be found most of the time.

A slight variation of the geometry previously described is shown in Fig. 8. The only dif-
ference is the change in the variance, o, Figure 9 depicts the calculated average probability
of misclassification. The averages are all lower than those shown previously, & result of the
reduced variance. In addition, there are now 5 minima, rather than 2, so that a minimum seek-
ing technique is more dependent on the starting linear combination. The number of easily de-
tectable minima can be reduced by artificially increasing the variance. This phenomena may

lead to an improved minimum seeking technique.

5.1 CHOQFING LINEAR COMBINATIONS
The problem of finding a good method of choosing linear combinations is primarily one of
finding a workable algorithm in three distinct steps: {1) develop a measure of performance,
{2) develop a minimum seeking technique, and (3) find suitable starting points for initiating the
minimum seeking technique. In addition, the algorithm should not require an excessive amount
of computational time.
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5.1.1 PERFORMANCE MEASURE
The performance measure used to evaluate both subsets of linear combinations and subsets

of pure channels can'be expregsed as:’

M :;cp

where the summation is for all signatures, the i-th class is distributed normally with mean

¢ ¢ Ry +RY 1/2
1/2 [(u, - uj)AA—zlA Alug =) | (65)

~

vector M and covariance matrix Ri’ and (X} is the normal distribution function. The row
vectors of the m»n matrix A represent the linear combinations in question {n is the number

of pure channels and m is the number of linear combinationg}. When this expression is used

to evaluate a subset of pure channels,the matrix A becomes an array of 0's and 1's.  In the past,
this expression has been used for this purpose. Notice that if the distance between means,

I ‘”“j’ is increased the argument of the normal distribution function associated with that pair
ig increased,resulting in an increase of the expression M. M is thus an approximate measure
of the total number of correct clasgifications. The average probability of misclassification is

then approximately 1 minus a term proportional to M.

i Ri and Rj increase, then the average probability of misclassification would be eXpected
to inerease. Following through the expression for M we see that this is so. A maximum likeli-
hood linear decision rule (as opposed to a quadratic decision rule) very similar in form to
Eq. {65) is now used routinely in this laboratory for recognition processing. The measure M
is an accurate measure of the results actually obtained in using this rule with two specific
approximations. First,M gives added weight to regions which can be misclasgsified in more than
one way, while a decision rule used on actual data partitions all the data uniquely into separate
classes. Second, the linear decision rule actually used on data takes account of both of the co-
variance matrices R, + Rj’ whereas Eq. (65) merely averages them together. Equation (65) is,
however, a more accurate measure than others which have been suggested. For exampie,

(R.1 + Rj }/2 could be replaced by the average of all the covariance matrices in the signature set,
rather than using the appropriate pairwise average. Also,the function ¢ could be replaced hy
its argument.resulting in what has been designated a "divergence criterion;" This is clearly
an inferior criterion since it continues to force more separation between means even after they
are several sigma apart. An advantage of Eq. (65} is that it can be developed directly from the
maximum likelihood decision rule, so the approximations used can be enumerated and evaluated.
In fact, Eq. (65) is approximately proportional to a constant minug the average- proba.bili'ty of

misclassification that would be measured.

43



Z FORMERLY WILLOW RUN £ ABORATORIES, THE UNIVERSITY OF MICHIGAN

5.1.2 MINIMUM SEEKING TECHNIQUE

A method has been developed to find a local minimum of a function of several variables by
starting at a point and following a path of steepest descent by steps of variable but controllable
gize. Both the local gradient and the local curvature are used to estimate the path of steepest

descent,

There is one additional problem concerning the determination of A that should be mentioned.
If A is an mxn matrix, there are mn components to be determined. This number of components
can be reduced to m{n - m) by the choice of a suitable canonical form of A. A canonical form is
possible because the value of M obtained for any A is not changed if PA is substituted for A,
where P is any nonsingular matrix. We actually use PA, where P is chosen to scale the aver-
age covariance matrix and the mean vectors of the materials to our data format. The canonical

form we choge is:

- -

tan 911 tan 812 ... tan gl(n-m}

tan 921

A = I {66)

tan @
m

A d

where Im ig the identity matrix with rank m. (For a specific example gee Table 8, where m = 3,

n = 10, and the 10 pure channels have been rearranged in order of the wavelength.)

The canonical form with the eij has two advantages. The first is that, in general, a mini-
mum number of unknown scalars must be found. The second advantage is that the minimiza-
tion process can be accomplished by varying the gij with a nearly uniform step size. It is not
necessary to have large jumps in the values of the unknown secalars, which occur if the tan Bij

are congidered to be the unknown scalars.

5.1.3 FIND STARTING POINTS
Finding starting points, the third step, is more difficult., The following are suggested start-

ing points.

Best Subset of Channels Starting Point

Each individual channel can be thought of as a linear combination of channels. {The vector
repregenting this combination has a 1 in the appropriate coordinate and O's elsewhere.) There-

fore, a subset of m channels can be thought of as a set of m linear combinations. Since the
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number of subsets of m channels can be large, rather than check through all of them to find the
best one, we use a stepwise procedure to find a "good” one. This stepwise procedure succes-
sively adds the one channel which gives the lowest average probability of misclassification when
used with the channels already selected. The linear combinatioﬁs represented by this subset

are then used as a starting point.

Norm-Bguared Starting Point

By replacing each covariance matrix by the average of all of them, the problem is reduced
to minimizing the function.

M(P) =3 9(1/2 Elpwill) (67)
i

where the W area fixed set of vectors and P ranges over all crthogonal projections of rank m.

_ The nymber of vectors W, ig the total number of pairwise combinations of signatures. Each

projection P corresponds in a simple fashion to a matrix A in the original formulation (see [ 23] ).

The projection P which maximizes
2 :
Lilpw 17 (68)
i .

is found analytically and the corresponding A is used as a starting point.

Principal Eigenvector Starting Point

First calculate the average of all the covariance matrices, Then transform the data so that
the average covariance matrix is the identity matrix. Let Ny, R) be the distribution of all the
transformed data in the training area lumped together. This distribution can be calculated from
the distributions of the various materials if we can estimate the frequency of occurrence of
each material, The starting point A is then taken as the matrix whose row vectors are the m

orthogonal eigenvectors corresponding to the m largest eigenvalues of the covariance matrix R.

Clustered Starting Point

This method is based 'on the fact if there are only two signatures and we are using linear
discrimination, then there always exists a single linear combination channel which distinguishes
exactly as well as all n channels no matter what the value of n. H there are many signatures,
then for each pair Si’ Sj(i # i), Vij canbe the unit vector corresponding to this best single li.near
combination. In general, the numbe_r of vectors vi,j’ will be greater than m. The Vi,' are then
clustered into m clusters. For each cluster Ck, k=1,..., m, a weighted average, Wi of the
Vi,j in that cluster is computed. The starting point A;is formed from thg Wi as row Yectors.
The weights can be made to reflect the sensitivity of the_recognition accuracy to the decision

rule,

45



Z FORMERLY WILLCW RUN LABORATORIES, THE UNIVERSITY GF MICHIGAN

5.2 EXPERIMENTAL RESULTS

We compared subsets of linear combinations with subsets of pure channels. The data used
were from one of the sets previously employed to test our linear decision rule [ 1]. We chose
this particular set because of the difficulty we have noticed in obtaining satisfactory recognition
with it. We felt that with relatively poor recognition accuracy, the test results would represent
greater statistical accuracy. ¥ only a few data points were incorrectly recognized, the test

results would be too dependent on those few points.

The test procedure we used was to first select data that corresponded to 20 training fields.
From these fields we developed statistics (mean and covariance) for each of the 7 classes of
materials. The statistics or signatures were then used to develop the decision rules which were
applied to data that corresponded to 23 test fields different from the training fields. We then
found the average correct recognition for each field, and then the average for each material.
Finally we averaged recognition accuracies for the materials to obtain an average recognition
accuracy for the data set. The computer programs were merely functional, not optimized for

minimum computation time, go meaningful comparisons of computation times were not made.

The material classes consisted of bare soil and six vegetative species: alfalfa, barley,
lettuce, sugar, safflower, and rye. The bare soil data tended to be atypical, because three or
more pure channels of data provided almost perfect recognition, whereas all of the subsets of
3 linear combinations of channels provided reduced accuracy. Note that the various subsets of
linear combinations were chosen to optimize over all the species; therefore, it is not surprising
that they did less well for one of them, There is some evidence that one infrared channel or
ratio of channels can be used to separate vegetative and non-vegetative materials, Thus,for
some applications of layered or sequential classifiers, bare soil may not be considered as a
class to be recognized when discriminating among vegetation types. However, for this study,

we retained bare soil as a class.

The test results are shown in Fig. 10. The entire bar indicates the average recognition
accuracy obtained for the 7 classes, The unshaded portion indicates accuracies for the 6
vegetative classes. Note that the recognition accuracy for the subset of 3 linear combinations
was better than that obtained when subsets of either 3 or 4 best pure channels were used. In
fact, the accuracy approached that obtained for all 10 channels, especially when only the 6 vege-

tative materials are considered.

Figure 10 showg the average recognition accuracy obtained for one subset of 3 linear com-
binations only. We actually tested three subsets of 3 linear combinations. Two of the subsets
resulted from minimizing our measure function with two different starting points (the first of
these was used for Fig, 10) and the third subset was an unweighted addition of channels. We
obtained approximately the same average recognition accuracy for each of the subsets of linear

combinations. 46
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In Table 9, the average recognition accuracies we obtained from the 3 subsets of 3 linear
combinations are compared with each other and with subsets of pure channels. Note the corre-
spondence with the predicted accuracies, especially for subsets of pure channels without the

bare soil class. The accuracies were predicted from Eqg, (63) with all signatures, including bare

soil, being used.

The first subset of linear combinations is shown in Table 8, each row represents one com-
bination. This matrix is not determined uniquely, because premultiplication by any nonsingular
matrix results in 2 new set of linear combinations which would reduce identical recognition
performance. The starting point for this set was the subset of 3 pure channels that we used for

comparison.

TABLE 8. MATRIX DESCRIBING 3 LINEAR CHANNELS WHEN

THE STARTING POINT IS THE BEST SUBSET OF 3 CHANNELS.

Each row contains a set of weights that determines one of the
linear combinations. '

0.29 ; 0.45 | -0.74 -0.42 -0.06 007 |0 0 | -0.20
0.23 | 0.65 | -0.02 0.60 0.76 0.82 t1 0 [ -0,01
0.18 j 0.57 ~0.34 0.20 0.31 0.11 {0 ;1 | -0.09
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TABLE 8. PERCENTAGE RECOGNITION ACCURACY OBTAINED
BY USING LINEAR COMBINATIONS, SUBSETS OF CHANNELS,
AND ANALYTIC PREDICTION

LINEAR COMBINATIONS SUBSETS )
No.1  No.2  No.3 3 4 10
Recognition (%) Recognition (%)
Without soil 66 66 64 51 59 8
With soil 67 70 69 58 65 [ 173
Predicted Tl 75 51 62 70

49



Z FORMERLY WILLOW RUN LABORATORIES, THE LUNIVERSITY OF MICHIGAN

6
CONCLUSIONS AND RECOMMENDATIONS

A general linear theory can be used for adapting the means of class signatures. The theory

can accommodate the use of known additive and multiplicative changes te the means, use of un-
certain decision results or proportion estimates, a method to use auxiliary ground truth, and a
method of adapting scan angle corrections. The general theory, which is essentially a decision-
directed Kalman filter, includes as special cases the adapting algorithms which had been derived

empirically and tested during last year’s contract.

Two limiling features of the Kalman filter can be avoided simultaneously. These are: (1)
the requirement that first- and second-order statistics of the variations of the means be known,
and (2) large memory and computation requirements are generally associated with a Kalman
filter containing many states. Because the Kalman [ilter model is only an approximation to a
description of remotely sensed data, the use of the more accurate statistics may not produce a

significant improvement in the accuracy of the mean estimates.

The development and testing program was devoted to finding simple, practical methods,
rather than to the full vwtilization of the generality of the theory. The test resulis provided con-
firmation of the usefulness of the Kalman filter model. It was shown that processing accuracy
could be improved over that obtained previously with empirically derived algorithms, as well

as that obtained when the means were held constant.

We conclude from these limited tests that the Kalman filter algorithm can improve classi-
fication accuracy in two ways: The updated means can be made to follow variations in the data
caused by inter- and intra-field changes in the ground covers. Or, the updated means can be
restricted to show variations which would follow slow changes regulting from atmospheric vari-

ations, varying sun position, or varying ground cover reflectances in the data.

The ability of the Kalman filter to adapt to rapid changes in the data may have an important
operational consequence. Tt should be possible to better delineate fields and field boundaries.
This may improve the accuracy of estimating acreage, e.g., specific agricultural crops, as well

as increasing the probability of a correct decision of the ground cover on a given field.

As a result of the test results, one conclusion must be that adaptive processing is a pro-
cessing method capable of improving recognition accuracies, at least for some data sets.
Additional testing should indicate the general usefulness of the technique and the parameters
to be used. There are indications that the linear, rather than quadratic, decision rule would
increase classification accuracy and decrease processing time. We believe that the filter

should be implemented so that auxiliary training fields can be used to decrease the probability

f canture
of cap .
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From observing the test results, we have concluded that the Kalman filter model should be
changed so that the means adapt to slow the rapid changes in the data simultaneously. If this

change is made, the updating rate should increase without increasing the probability of capture.

We did not try to update the signature means while estimating proportions of unresolved
objects, In addition, we did not try using any auxiliary information, The sun sensor in the

ERIM M-7 multispectral scanner is one source of auxiliary information presently available.

We believe that adaptive processing is a useful method of classifying multispectral data.
Additional testing with other data sets should be performed so that the capabilities and limita-
tions can be better understood and the method can come to be used routinely. The Kalman
filier processor can fulfill many functions simultaneously. In fact, it appears that many prac-

tical adaptive algorithms can be shown to he equivalent to a Kalman Iilter.

Finally, we conclude from our study of feature extraction that the use of linear combinations
may he a feasible method of spectral feature extraction to reduce overall processing time, The

tests should be extended to include more data sets and different starting points.
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Appendix A
BASIC KALMAN FILTER

The Kalman filter has been known, used, and described for some years. The develop-
ment that follows [ 28] is intended as a review and to show one method of development that can
be uged to obtain all of the Kalman filter variations that are described in this report.

The basic assumption for the theory is that a process can be described by the two

equations:
S D S T _ (A.1)
z =H X +v, 7 _ _ | _ _ ' _ - (A.Z)_

where X is an nmx1 state vector defined at time tk " ig an nx]1 measurement vector, Hk is
an nxnm transition matrix; and Wk and Vi are random vectors with dimensions nm * 1 and

nx1 respectively. We further assume that we have a Markov process, i.e.,

Ew) =0, k=1,... (A.3)

t . '
E(wkwj>= ékak’ bk=1,2,... , , (5.4)
E(vk) =0, k=1,... (A.S)
ty . . _ ) : o
E(Vk"j) = oijka k=12 ... ' (A'B)
t .
E(wkvj> =0, j,k=1,2,... (a.7)
We wish to estimate X with xk, knowing Zys e oo B and we wish our estimate to be optimum
in the sense that we minimize trace Pk’ where
R N A t a - | '
P - E{ & - x)&, - x0'] | A

We shall estimate X, with the equation

X =Ry TR - HX ) . (A.9)

where Kk is to be determined. Eguation{A.9}is not the most general form of linear estimators, .
but it can be shown that we shall obtain the optimum estimate. Of course we have restricted
our estimate to be a linear function of the measurements, but our estimate is actually optimum

even without this restriction if v, and Wy are Gaussian random vectors.

k
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We wish to find the Kk that minimizes the trace of

~ ~f )
Pk = E(xkxk) . . | {A.10)
where
~ A
X =Xy - X (A.11)
=% (H “HE ) ' (A.12)
=Xy KX v - Hpx ) -x A.

which we obtain by combining Eqs. {A.2), {A.9), and (A.11). We now use Eq. (A.1) and get -

Fa A
X =X q KX TRty mHx ) o - we
=1 -KHME 4 -w )+ Ky, © (A.13)

We next form P, , using Eqs. (A.7), (A.10), and {A.13}.

k
P;l; - E[(I " KBy - e Fe_q e ',Kka)t] ¥ E(Kkvk‘{:Kli) - ey
- (- KPR )| KRR (a1
where
Pr =P * (4.16)

We now complete the square in Kk’ which resulis in

_ t t o,
P, = (K - ABK, - A - ABA" - By | (A.17)
where
A-pat (H Pt + . —)—1 - (A.18)
= P AN P+ Ry -
Lt
B-HPH +R (A.19)

We can now minimize trace Pk by letting

-1
K - 4= P (m pimy R ) (4.20
With this. value of Kk’ S
Py - P KR . - (a2

We have now completed the development of the basic Kalman filter. The filter is de-
scribed by Egs. (A.9), (A.16), (A.20), and (A.21),
54



Z FORMERLY WiLLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

' Ap;ieridix B
A KALMAN FILTER FOR AUXILIARY GROUND TRUTH
The Kalman filter will be derived following the procedures used in Appendix A. We first
define the problem:

Mk * M1 T Vit (B.1)

2y = B X vy ‘ (B.2)

A P A N .

e = Feoy T KBy - i)+ 3 g by - F ) S (B.3)

i:
~ N . i
X =X T X _ (B.4) -
k- VK - RV B5)
=P 1 +Q R .(B—;.ﬁ}. ST

We wish to find Kk and Jk that minimize trace Pk' The number of ground truth fiefds is p- e
We assume that at pomt N we know HN XNt {the means computed from the auxiliary ground
truth). The first step is to combine Egs. (B.3) and (B.4); using (B.1) and (B. 2) '

S R R S TS T v - HE

iJleNi(XNi “Fed) Kot Wiy

i=1

==K I 5 -we )+ Ky

N . .
+i ki~ %1 (B.7)
o

Before we compute Eq. (B.5), we shall compute two expectations. We first note that
A - . A
Wi Tl TRl PRkl TVt YV T %

Wk—l + ..t WNi—l - Xk_l (BB)

1

If we use Eq. (B.8}, we find that, for i > j

. 2 AT ,

E,ExNi Xk-l)(XNj - xk-l):| = Pk—l + Qk—l ...+ QNj—l = Pk + (Nj -k}Q (B.9)
when Qi = Qfor all i. Also,
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E[&k—l " Wi g - Qk’-l)t] = B[R g - W )y gy cR )] =B (B10)

We are now at the point where we can compute Eq. {B.5).

~ A ~
P = By |- K HIG v ) Ky +i TeiENini = B || @ - KH &y = vy y)
=1

E % : t t
+ K v +ZkaHNj(xNj “E )| UK H)P( -K H ) + K R K
i= .-

p
-) 0 -KH, PkHN]Jk] iJmHmPk KA
i=

i=1
p
" Z Tl P = (N 5 300 HN]Jk] (B.11)
where
N i~ N,1<j
' ) (B.12)
=N s ] i i

We shall simplify Eq. (B. 1)) before finding Kk and J, .. The last term of Eq, (B.11} is

P
} : t ot
T = Z Tl Pic + (N 5 QI Hygydy
1
=iJkiHNi[Pk -kl HN] }q (B.13)
iz
+ Hy [Py + (N, - KQIHE af
k1 j Nji k
17

The second part of Eq. (B.13) can be written

P ' t 1t
3 du (e s, -
> kl{ Nl Pk * (N} ~ KAl HNi} ki
=
If we define

=H

: ¢
i = Bl P+ () - Q] Hy,
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" Eq. (B.13) becomes

T —i kit ijk k] Z:Jkl jik kl : (B.14)

i=j i>i

Eq. (B.14) has the form of a vector -matrix-vector product, although each term is a matrix.

When we use partitioned matrices, we have

t
T, = 3 FI (B.15)
where
= ) (B.16)
Fiik Frox
F-{ F'._  F ' (B.17)
12k “22k |- oA

Two other terms of Eq. (B.11) should be simplified;

i: -K H )P H N k | (B.-l?)' -
= _

P
t
Ty = Z;Jkl NiPk - K ) (B.19)
i= :
We first note that T3 = Tt2. We also note that the terms in Eq. (B.18) that depend on the index
j have the form of an inner product. Thus we write
- -x B )P at ot gt (B.20)
Kt Py HgHydy :
where J, is defined in Eq. (B.16) and
1
HN = . {B.21)
HNp

This completes the simplification of Eq. {B.11), which can now be put into the form
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' t t R A
P = T-KHIPI -K H) +KRK -(@-KH)PHJ

. t t
- JkHNPk(I - Kka) + JkFJk (B.22)
The next step is to find Jk that minimizes Pk‘ We shall use the identity
775t o5 Fat - aFst =, - AFG. - a)f - aFA ® 23)
k' 'k "k k™ Yk k .
with
A-(I-KH)pH F1 (B.24)
= I - K R )P HogFy '
Equation (B.22) becomes
. t t t t
P = ([ -KHIP I -KH) +KRK +(J -AFJ -A) -AFA (B.25)
Thus, independently of K‘k we choose
3 —a-g-ku)patrpl (B.26)
= A= I -KH)P Hy '
and have
P -(I-KH)P(-KH)+ t - ywprat r e pra -k u )t
k K P 0 - K H )+ K R K K )P HeF "H P (I - K H
e ey t t
= (I Kka)Pk(I Kka) + KkRkKk {B.27)
where
pr-p -prut Fly g (B.28)
k™ "k kN Nk .
The minimization of Eq. {B.27) with a chaice of Kk is in Appendix A.
- prat(m, prat 4 p)L (B.29)
K = P A P + Py .
P, =P - KkaPk {B.30)

This completes the development.
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